بدائل البحث:
models representing » model representing (توسيع البحث), models represent (توسيع البحث), samples representing (توسيع البحث)
python models » python code (توسيع البحث), motion models (توسيع البحث), pelton models (توسيع البحث)
models representing » model representing (توسيع البحث), models represent (توسيع البحث), samples representing (توسيع البحث)
python models » python code (توسيع البحث), motion models (توسيع البحث), pelton models (توسيع البحث)
-
101
Datasets from the Programmatic Analysis of Fuel Treatments: from the landscape to the national level Joint Fire Science Project (14-5-01-1)
منشور في 2025"…Included for each study site are individual rasters representing the fire affected resources for that study site. …"
-
102
Improving the calibration of an integrated CA-What If? digital planning framework
منشور في 2025"…planning support system (PSS) sub-model to generate and analyse three representative built-up development scenarios. …"
-
103
Supplementary Material for: The prediction of hematoma growth in acute intracerebral hemorrhage: from 2-dimensional shape to 3-dimensional morphology
منشور في 2025"…We subsequently constructed the 3-dimensional morphology models, including the probability of hematoma morphology (PHM) and the probability of comprehensive model (PCM), to predict HG. …"
-
104
Summary of Tourism Dataset.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
105
Segment-wise Spending Analysis.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
106
Hyperparameter Parameter Setting.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
107
Marketing Campaign Analysis.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
108
Visitor Segmentation Validation Accuracy.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
109
Integration of VAE and RNN Architecture.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
110
Data Sheet 1_Feasibility of predicting next-day fatigue levels using heart rate variability and activity-sleep metrics in people with post-COVID fatigue.csv
منشور في 2025"…Background<p>Post-COVID fatigue (pCF) represents a significant burden for many individuals following SARS-CoV-2 infection. …"
-
111
<b>Data and Code from 'The Perfect and Legitimate Bribe': A Transparent Record of Human-AI Collaboration in Legal Scholarship</b>
منشور في 2025"…</p><p dir="ltr">For optimal viewing of `collated-anonymized.txt`, a text editor that can handle long lines without word wrapping is recommended to preserve the indentation that represents the conversational branching structure.</p><p><br></p><p dir="ltr">### **Running Code/Software**</p><p dir="ltr">The provided scripts (`collator-ipynb.txt` and `sentence-ancestry-ipynb.txt`) are Jupyter Notebooks and require a Python 3 environment to run. …"
-
112
Daily histograms of wind speed (100m), wind direction (100m) and atmospheric stability derived from ERA5
منشور في 2025"…The following bins (left edges) have been used to create the histograms:</p><p dir="ltr">Wind speed: [0, 40) m/s (bin width 1 m/s)<br>Wind direction: [0,360) deg (bin width 15 deg)<br>Stability: 5 discrete stability classes (1: very unstable, 2: unstable, 3: neutral, 4: stable, 5: very stable)</p><p><br></p><p dir="ltr"><b>Main Purpose:</b> The dataset serves as minimum input data for the CLIMatological REPresentative PERiods (climrepper) python package (https://gitlab.windenergy.dtu.dk/climrepper/climrepper) in preparation for public release).…"
-
113
Building footprtints from 1970s Hexagon spy satellite images for four global urban growth hotspots
منشور في 2025"…The data represent the final results, that means, after merging models with different chip sizes and post-processing (see manuscript). …"
-
114
Social media images of China's terraces
منشور في 2025"…Geo-tagged images were collected using Weibo cookies and Python-based scraping tools (available at: https://github.com/dataabc/weibo-search). …"
-
115
Bacterial persistence modulates the speed, magnitude and onset of antibiotic resistance evolution
منشور في 2025"…</p><p dir="ltr">Repository structure</p><p dir="ltr">Fig_1/</p><ul><li>Probability of emergence analysis</li><li>Fig_1.py: contour plot generation</li></ul><p dir="ltr">Fig_2/</p><ul><li>MIC evolution simulations</li><li>Fig_2_a/: R-based simulation analysis</li><li>Fig_2_b/: Python visualization</li><li>Fig_2_c/: speed of resistance evolution analysis</li><li>Fig_2_d/: time to resistance analysis</li></ul><p dir="ltr">Fig_3/</p><ul><li>Distribution analysis</li><li>Fig_3_a-b.R: density plots and bar charts (empirical and simulated)</li></ul><p dir="ltr">Fig_4/</p><ul><li>Mutation analysis</li><li>Fig_4_a-b/: mutation counting analysis</li><li><ul><li>Fig_4_a/: simulation data (sim)</li><li>Fig_4_b/: empirical data (emp)</li></ul></li><li>Fig_4_c/: gene ontology and functional analysis</li></ul><p dir="ltr">Fig_5/</p><ul><li>Large-scale evolutionary simulations</li><li>Fig_5_a-b/: heatmap visualizations</li><li>Fig_5_c/: MIC and extinction analysis (empirical)</li></ul><p dir="ltr">Fig_6/</p><ul><li>Population size effects</li><li>Fig_6.py: population size analysis simulations</li></ul><p dir="ltr">S1_figure/</p><ul><li>Supplementary experimental data</li></ul><p dir="ltr">S2_figure/</p><ul><li>Supplementary frequency analysis</li></ul><p dir="ltr">S3_figure/</p><ul><li>Supplementary probability analysis</li></ul><p dir="ltr">scripts_simulations_cluster/</p><ul><li>Large-scale, cluster-optimized simulations</li></ul><p dir="ltr">complete_data/</p><ul><li>Reference to the full data sheet (full data set deposited elsewhere)</li></ul><p dir="ltr">Script types and languages</p><p dir="ltr">Python scripts (.py)</p><ul><li>Mathematical modeling: survival functions, probability calculations</li><li>Stochastic simulations: tau-leaping population dynamics</li><li>Data processing: mutation analysis, frequency calculations</li><li>Visualization: plotting with matplotlib and seaborn</li><li>Typical dependencies: numpy, pandas, matplotlib, seaborn, scipy</li></ul><p dir="ltr">R scripts (.R)</p><ul><li>Statistical analysis: distribution fitting, density plots</li><li>Advanced visualization: publication-quality figures (ggplot2)</li><li>Data manipulation: dplyr / tidyr workflows</li><li>Typical dependencies: dplyr, tidyr, ggplot2, readxl, cowplot</li></ul><p dir="ltr">Data requirements</p><p dir="ltr">The scripts are designed to run using the complete_data.xlsx file and, where relevant, the raw simulation outputs and empirical data sets as described above. …"
-
116
End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting
منشور في 2025"…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …"
-
117
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
منشور في 2025"…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata from Step 1</li><li><code>perception_module/trained_models/</code> - Pre-trained models</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python -m perception_module.pred \<br> --model-weights .…"
-
118
Supplementary material for "Euler inversion: Locating sources of potential-field data through inversion of Euler's homogeneity equation"
منشور في 2025"…</p><h2>License</h2><p dir="ltr">All Python source code (including <code>.py</code> and <code>.ipynb</code> files) is made available under the MIT license. …"
-
119
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…Analysis of the confusion matrix revealed a critical limitation: although the model correctly identified 785 poisonous mushrooms, it misclassified 313 as edible (false negatives), which represents an unacceptable risk in a practical application.…"
-
120
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
منشور في 2025"…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"