بدائل البحث:
python source » pathogen source (توسيع البحث), proton source (توسيع البحث), photon source (توسيع البحث)
source codes » source code (توسيع البحث), source tools (توسيع البحث)
python source » pathogen source (توسيع البحث), proton source (توسيع البحث), photon source (توسيع البحث)
source codes » source code (توسيع البحث), source tools (توسيع البحث)
-
141
Data repository for "Interacting topological quantum chemistry of Mott atomic limits" (Phys. Rev. B <b>107</b>, 245145, 2023)
منشور في 2024"…</p><p dir="ltr">The python script "ED_g2.py" contains an example of the source code used to compute the two-particle Green's functions.…"
-
142
Murakami et al. Supplemental Data for "Microstructural Analysis of Li-Ion Conductors with Deep Learning and SEM Images"
منشور في 2025"…</p><h2><b>SEM_images.zip</b>: </h2><p dir="ltr">These files consists of SEM images and numerical datasets (descriptors and objective variables) of composition, sintering temperature, and ionic conductivities for 52 samples (1-3 SEM images are included per 1 sample, total 130 images)</p><h2><b>python_codes.zip</b>: </h2><p dir="ltr">Python codes for four convolutional neural network (CNN) models used to investigate the relationship between these image data and ionic conductivity are provided.…"
-
143
Supporting data for "Optimisation of Trust in Collaborative Human-Machine Intelligence in Construction"
منشور في 2025"…The second folder mirrors the structure of the first, encompassing Scopus data and Python source code used to generate the visualizations featured in Chapter 2. …"
-
144
Pharos Data
منشور في 2025"…Run the analysis<br><code>python</code><code> </code><code>_main.py</code><br><br>4. …"
-
145
ImproBR Replication Package
منشور في 2025"…**Setup Virtual Environment**<br> Create virtual environment:<br> ```bash<br> python -m venv improbr_env<br> ```<br> <br> Activate virtual environment:<br> ```bash<br> source improbr_env/bin/activate # Linux/Mac<br> # improbr_env\Scripts\activate # Windows<br> ```<br><br>3. …"
-
146
Supplementary files for "A Guided Assistant for Building Machine Learning Models in Analytical Workflows"
منشور في 2025"…<table><tr><td><p><br></p></td></tr></table><p dir="ltr">app.py: Source code for the chatbot using the original system prompt (as demonstrated in the two case studies)</p><p dir="ltr">app_revised.py: Source code for the chatbot using the revised system prompt (incorporating enhancements from peer review)</p><p dir="ltr">test case 1.txt: Full conversation history for Test Case I (LFIA classification)</p><p dir="ltr">test case 2.txt: Full conversation history for Test Case II (LC-MS retention time regression)</p><p dir="ltr">revised_chat_history.txt: Test conversation illustrating new behaviors introduced by the revised system prompt</p><p dir="ltr">test case 1.py: Python script generated during Test Case I session for LFIA classification</p><p dir="ltr">test case 2.py: Python script generated during Test Case II session for retention-time regression</p><p dir="ltr"><br></p>…"
-
147
Mexico Airports Traffic Statistics (2006–2025)
منشور في 2025"…</li><li><b>Requirements File</b>: A <code>requirements.txt</code> file listing the Python dependencies needed to run the script.…"
-
148
MLP_mod_application_v2.zip
منشور في 2025"…<p dir="ltr">The python source code for predicting the spatial location of macrophages using single cell dataset. …"
-
149
Calculation of slip behaviour and transient permeability evolution of a fracture
منشور في 2024"…</p><h2>Required packages:</h2><ul><li>python==3.12.2</li><li>numpy==1.26.3</li><li>pandas==2.1.4</li><li>scikit-opt==0.6.6</li><li>matplotlib==3.8.0</li></ul><h2>Usage:</h2><ul><li>The file named "example.ipynb" is a jupyter-notebook file, which includes the source code of the inversion of consitutive parameters of both the rate-and-state friction law and the displacement- and velocity-dependent aperture model, as well as the source code of the calculation of slip behavior and permeability evolution based on these two models. …"
-
150
Supporting data for “Deep learning methods and applications to digital health”
منشور في 2024"…</p><p dir="ltr">Several packges are mendatory to run the source code, including:</p><p dir="ltr">Python > 3.6 (3.11 preferred), TensorFlow > 2.16, Keras > 3.3, NumPy > 1.26, Pandas > 2.2, SciPy > 1.13</p><p><br></p>…"
-
151
SRL OF TIM
منشور في 2025"…</li><li><code><strong>plot_scripts/</strong></code>: Includes data files and Python scripts used to generate the visualizations presented in the review (e.g., bar charts, pie charts, distribution graphs).…"
-
152
Wolframin Degradome Foundation Atlas
منشور في 2025"…To extract, use the following command in a bash terminal:</p><pre><pre>tar -xvJf Wolframin_Degradome_Foundation_Atlas_v3.tar.gz<br></pre></pre><p dir="ltr"><b>Codes</b><br>Dataset generation is fully reproducible using three open-source tools: <b>Python, BLAST, and SAS</b>. …"
-
153
Not All local LLMs Are Equal: A Benchmark of Energy and Performance
منشور في 2025"…<br><br>To execute the program, run the following command, changing the parameters as needed:<br><br>```bash<br>#!/bin/bash<br><br>source ../env/bin/activate<br><br>export PYTHONPATH=$PYTHONPATH:$(pwd)<br>export WEGGLI_PATH=weggli<br>export PATH="$HOME/.cargo/bin:$PATH"<br><br>python3 main.py \<br> --llm_path llms/models/codellama-7b-instruct.Q5_K_M.gguf \<br> --benchmarks humaneval_x/\<br> --max_tokens 512 \<br> --n_ctx 4098 \<br> --seed 42 \<br> --top_p 0.95 \<br> --temperature 0.6 \<br> --n_times 1 \<br> --sleep_time 1.0 \<br> --save_output yes \<br> --n_shot_prompting 0 \<br> --pass_k 1 \<br> --samples_interval all<br><br>deactivate<br>```<br><br><b>Note:</b> You may need to create the <code>__init__.py</code> files manually, as Figshare does not allow uploading files with zero bytes.…"
-
154
<b>Processed Temperature Data for China (1990–2022): NOAA-Derived Daily Records with Spatial Attributes</b>
منشور في 2025"…</li><li>Integration with GIS platforms (e.g., QGIS, ArcGIS) or Python-based workflows.</li></ul><h4><b>Technical Details</b></h4><ul><li><b>Software</b>: Processed using Python 3.x with <code>pandas</code>, <code>geopandas</code>, and <code>pyarrow</code>.…"
-
155
Age Distribution of Parents of Registered Births in Mexico (1985-2024)
منشور في 2025"…</p><h3>Dataset Details</h3><p dir="ltr">The dataset includes detailed annual records with the following columns:</p><ul><li><code>REGISTRATION_YEAR</code> – Year when the birth was registered</li><li><code>BIRTH_YEAR</code> – Year of birth</li><li><code>REGISTRATION_STATE</code> – Numeric ID of the state where the birth was registered</li><li><code>RESIDENCE_STATE</code> – Numeric ID of the mother’s state of residence</li><li><code>MOTHER_AGE</code> – Age of the mother at the time of birth</li><li><code>FATHER_AGE</code> – Age of the father at the time of birth</li><li><code>COUNT</code> – Number of records for each combination of the above variables</li></ul><h3>Included Files</h3><ul><li>Dataset: Complete archive of births (1985–2024) with the fields listed above, sourced from INEGI microdata.…"
-
156
MEG Dataset and Analysis Scripts for “The Effects of Task Similarity During Representation Learning in Brains and Neural Networks”
منشور في 2025"…</p><h3><b>Contents</b></h3><ul><li><b>MEG data</b> (results of the correlation between empirical and model matrices at different dimensionalities and domains)</li><li><b>Behavioral data</b> (behavioural accuracy performance: "Spatual Source Data")</li><li><b>Analysis script</b></li><li><b>Python package </b>developed to help with retrieving and computing simple operations</li></ul><h3><b>Data format</b></h3><p dir="ltr">Data are organized according to a structured folder layout (see <code>README.md</code> in the repository) and include:</p><ul><li><code>npy</code> MEG files (numpy)</li><li><code>.csv</code> behavioral files</li><li>Python scripts using MNE-Python for statistical analysis and visualization</li></ul><h3><b>Usage</b></h3><p dir="ltr">The provided scripts reproduce the statistical tests and figures presented in the manuscript. …"
-
157
DCPR_V1.0
منشور في 2025"…</p><p dir="ltr"><b>DCPR_codes</b>: Source code for DCPR model.</p><p dir="ltr"><b>Visualization</b>: Scripts for data visualization, including circadian curves (cosine model fitting), sample plots (predicted and real time), model performance (CDF curves, and accuracy plots).…"
-
158
Discovery of a Latent Entropy-Based Physiologic State Variable Governing Multisystem Instability in Critical Illness
منشور في 2025"…Contents: notebook/ – A full Google Colab notebook exported as HTML and IPYNB, containing the exact code used for data cleaning, EI computation, EI_slope derivation, cross-correlation analysis, and multivariable regression. tables/ – CSV files of the processed ei_full dataframe, the xcorr_df table (lag-based cross-correlation results), and the ss_df table (two-variable OLS models for EI_slope). figures/ – Auto-generated plots of EI trajectories and regression diagnostics (if any were produced). metadata/ – Variable dictionaries, version information for Python, NumPy, Pandas, Statsmodels, and notes on reproducibility. …"
-
159
Visitors to Mexico’s Archaeological Sites and Museums (1996-2025)
منشور في 2025"…</li><li><b>Requirements File</b>: A <code>requirements.txt</code> file listing necessary Python dependencies for analysis.…"
-
160
SpaMask: Dissecting spatial domains in spatial transcriptomics by a masked graph attention autoencoder
منشور في 2024"…<br>(2) Tutorial for domain identification on 10x Visium human dorsolateral prefrontal cortex (DLPFC) dataset can be found here: Train_151674.ipynb.<br>Python source code, tutorials and datasets can be also accessed at https://github.com/LYxiaotai/SpaMask.…"