يعرض 81 - 91 نتائج من 91 نتيجة بحث عن 'python tool predictive', وقت الاستعلام: 0.26s تنقيح النتائج
  1. 81

    <b>Tau Degradome Foundation Atlas</b> حسب Axel Petzold (7076261)

    منشور في 2025
    "…</li><li><b>Compression format:</b> Datasets are distributed in <code>.tar.gz</code> format and can be extracted with:</li></ul><pre></pre><pre><code>tar -xvzf FILENAME.tar.gz</code><br><br></pre><p dir="ltr"><b>Reproducibility and Methods</b><br>All datasets can be fully regenerated using open-source software tools, including <b>Python</b> and <b>SAS</b>. To ensure transparency and reproducibility, the repository includes complete Python and SAS scripts with documentation, following the methodology described in [2].…"
  2. 82

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> حسب Shubham Pawar (22471285)

    منشور في 2025
    "…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>raw_data/glasgow_open_built/glasgow_open_built_areas.shp</code> - Grid defining sampling points</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python svi_module/get_svi_data.py<br></pre></pre><p dir="ltr"><b>Output:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata (IDs, coordinates)</li><li><code>svi_module/svi_data/images/</code> - Downloaded street view images</li></ul><h3>Step 2: Predict Perceptions</h3><p dir="ltr">Use pre-trained deep learning models to predict perceptual qualities (safety, beauty, liveliness, etc.) from street view images.…"
  3. 83

    Code حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…</p><p><br></p><p dir="ltr"><b>Prediction and Design of 5′ UTRs</b></p><p dir="ltr">We developed a convolutional neural network (CNN) model to predict 5′ UTRs. …"
  4. 84

    Core data حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…</p><p><br></p><p dir="ltr"><b>Prediction and Design of 5′ UTRs</b></p><p dir="ltr">We developed a convolutional neural network (CNN) model to predict 5′ UTRs. …"
  5. 85

    Globus Compute: Federated FaaS for Integrated Research Solutions حسب eRNZ Admin (6438486)

    منشور في 2025
    "…HPC enables researchers to perform simulations, modeling, and analysis, which are critical to predicting outcomes, guiding experiments, and developing new technologies [1]. …"
  6. 86

    <b>MSLU-100K: A multi-source land use dataset of Chinese major cities</b> حسب Yao Yao (7903457)

    منشور في 2025
    "…"Other" folder</h3><ul><li>"Tools" folder—The "Tools" folder contains the toolkits required for model training.…"
  7. 87

    Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr حسب Alfonso Ladino (21447002)

    منشور في 2025
    "…(NEXRAD), using open-source tools from the Python ecosystem such as Xarray, Xradar, and Dask to enable efficient parallel processing and scalable analysis. …"
  8. 88

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) حسب Erola Fenollosa (20977421)

    منشور في 2025
    "…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.…"
  9. 89

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) حسب U.S. Forest Service (17476914)

    منشور في 2025
    "…Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. …"
  10. 90

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Reproducibility Framework Container Orchestration # Kubernetes deployment manifest for reproducible environment apiVersion: apps/v1 kind: Deployment metadata: name: energy-benchmark-pod spec: replicas: 1 selector: matchLabels: app: benchmark-runner template: metadata: labels: app: benchmark-runner spec: nodeSelector: hardware.profile: "high-performance" containers: - name: benchmark-container image: albumforge/energy-benchmark:v2.1.3 resources: requests: cpu: "8000m" memory: "16Gi" nvidia.com/gpu: 1 limits: cpu: "16000m" memory: "32Gi" env: - name: MEASUREMENT_PRECISION value: "high" - name: POWER_SAMPLING_RATE value: "1000" # 1kHz sampling Dependency Management FROM ubuntu:22.04-cuda11.8-devel RUN apt-get update && apt-get install -y \ perf-tools \ powertop \ intel-gpu-tools \ nvidia-smi \ cpupower \ msr-tools \ && rm -rf /var/lib/apt/lists/* COPY requirements.txt /opt/ RUN pip install -r /opt/requirements.txt Usage Examples and API Documentation Python Data Analysis Interface import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns # Load dataset with optimized dtypes for memory efficiency df = pd.read_csv('ecological_benchmark_dataset.csv', dtype={'hardware_config': 'category', 'test_type': 'category'}) # Compute energy efficiency metrics df['energy_per_photo'] = df['energy_consumption_kwh'] / df['photo_count'] df['co2_per_gigabyte'] = df['co2_equivalent_g'] / df['total_volume_gb'] # Statistical analysis with confidence intervals local_energy = df[df['test_type'] == 'local_processing']['energy_consumption_kwh'] cloud_energy = df[df['test_type'] == 'cloud_processing']['energy_consumption_kwh'] t_stat, p_value = stats.ttest_ind(local_energy, cloud_energy) effect_size = (cloud_energy.mean() - local_energy.mean()) / np.sqrt((cloud_energy.var() + local_energy.var()) / 2) print(f"Statistical significance: p = {p_value:.2e}") print(f"Cohen's d effect size: {effect_size:.3f}") R Statistical Computing Environment library(tidyverse) library(lme4) # Linear mixed-effects models library(ggplot2) library(corrplot) # Load and preprocess data df <- read_csv("ecological_benchmark_dataset.csv") %>% mutate( test_type = factor(test_type), hardware_config = factor(hardware_config), log_energy = log(energy_consumption_kwh), efficiency_ratio = energy_consumption_kwh / processing_time_sec ) # Mixed-effects regression model accounting for hardware heterogeneity model <- lmer(log_energy ~ test_type + log(photo_count) + (1|hardware_config), data = df) # Extract model coefficients with confidence intervals summary(model) confint(model, method = "Wald") Advanced Analytics and Machine Learning Integration Predictive Modeling Framework from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import cross_val_score, GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import mean_absolute_error, r2_score # Feature engineering pipeline def create_feature_matrix(df): features = df[['photo_count', 'avg_file_size_mb', 'total_volume_gb']].copy() # Polynomial features for capturing non-linear relationships features['photo_count_squared'] = features['photo_count'] ** 2 features['size_volume_interaction'] = features['avg_file_size_mb'] * features['total_volume_gb'] # Hardware configuration encoding le = LabelEncoder() features['hardware_encoded'] = le.fit_transform(df['hardware_config']) return features # Energy consumption prediction model X = create_feature_matrix(df) y = df['energy_consumption_kwh'] # Hyperparameter optimization param_grid = { 'n_estimators': [100, 200, 500], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } rf_model = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='neg_mean_absolute_error') grid_search.fit(X, y) print(f"Best cross-validation score: {-grid_search.best_score_:.6f}") print(f"Optimal hyperparameters: {grid_search.best_params_}") Carbon Footprint Calculation Methodology Emission Factor Coefficients Carbon intensity calculations employ region-specific emission factors from the International Energy Agency (IEA) database: EMISSION_FACTORS = { 'EU_AVERAGE': 0.276, # kg CO₂/kWh (European Union average 2024) 'FRANCE': 0.057, # kg CO₂/kWh (Nuclear-dominant grid) 'GERMANY': 0.485, # kg CO₂/kWh (Coal transition period) 'NORWAY': 0.013, # kg CO₂/kWh (Hydroelectric dominant) 'GLOBAL_AVERAGE': 0.475 # kg CO₂/kWh (Global weighted average) } def calculate_carbon_footprint(energy_kwh: float, region: str = 'EU_AVERAGE') -> float: """ Calculate CO₂ equivalent emissions using lifecycle assessment methodology Args: energy_kwh: Energy consumption in kilowatt-hours region: Geographic region for emission factor selection Returns: CO₂ equivalent emissions in grams """ emission_factor = EMISSION_FACTORS.get(region, EMISSION_FACTORS['GLOBAL_AVERAGE']) co2_kg = energy_kwh * emission_factor return co2_kg * 1000 # Convert to grams Citation and Attribution This dataset is released under Creative Commons Attribution 4.0 International (CC BY 4.0) license. …"
  11. 91

    Nucleotide analogue tolerant synthetic RdRp mutant construct for Surveillance and Therapeutic Resistance Monitoring in SARS-CoV-2 حسب Tahir Bhatti (20961974)

    منشور في 2025
    "…Biopython: Freely available Python tools for computational molecular biology and bioinformatics. …"