Showing 361 - 380 results of 18,123 for search 'significant ((((((gap decrease) OR (step decrease))) OR (greater decrease))) OR (a decrease))', query time: 0.58s Refine Results
  1. 361

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  2. 362

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  3. 363

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  4. 364

    Methodological flowchart. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  5. 365

    Preference for the EIA vs. ETA across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  6. 366
  7. 367
  8. 368
  9. 369
  10. 370
  11. 371
  12. 372
  13. 373
  14. 374
  15. 375
  16. 376

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  17. 377

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  18. 378

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  19. 379

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  20. 380

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”