Showing 2,621 - 2,640 results of 5,113 for search 'significant ((((((gap decrease) OR (step decrease))) OR (greater decrease))) OR (mean decrease))', query time: 0.52s Refine Results
  1. 2621

    Ablation experiments of various block. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  2. 2622

    Kappa coefficients for different algorithms. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  3. 2623

    The structure of ASPP+ block. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  4. 2624

    The structure of attention gate block [31]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  5. 2625

    DSC block and its application network structure. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  6. 2626

    The structure of multi-scale residual block [30]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  7. 2627

    The structure of IRAU and Res2Net+ block [22]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  8. 2628
  9. 2629
  10. 2630
  11. 2631
  12. 2632

    Accuracy on the ERAM task. by Daisung Jang (16781451)

    Published 2024
    “…However, coefficients for estrogen were significant for both emotion recognition tasks. Higher within-person levels of estrogen predicted lower accuracy, whereas higher between-person estrogen levels predicted greater accuracy. …”
  13. 2633

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 2634

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 2635

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 2636

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 2637

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 2638

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 2639

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 2640

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”