بدائل البحث:
step decrease » sizes decrease (توسيع البحث), teer decrease (توسيع البحث)
gap decrease » a decrease (توسيع البحث), gain decreased (توسيع البحث), _ decrease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
step decrease » sizes decrease (توسيع البحث), teer decrease (توسيع البحث)
gap decrease » a decrease (توسيع البحث), gain decreased (توسيع البحث), _ decrease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
-
2801
Performance comparison of different models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2802
C2f and BC2f module structure diagrams.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2803
YOLOv8n detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2804
YOLOv8n-BWG model structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2805
BiFormer structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2806
YOLOv8n-BWG detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2807
GSConv module structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2808
Performance comparison of three loss functions.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2809
mAP0.5 Curves of various models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2810
Network loss function change diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2811
Comparative diagrams of different indicators.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2812
YOLOv8n structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2813
Geometric model of the binocular system.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2814
Enhanced dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
2815
Accuracy on the ERAM task.
منشور في 2024"…Using a repeated measures design with a sample of healthy naturally cycling women (N = 63), we investigated whether emotion recognition accuracy varied between the follicular and luteal phases, and whether accuracy related to levels of estrogen (estradiol) and progesterone. …"
-
2816
-
2817
-
2818
-
2819
-
2820