Search alternatives:
teer decrease » greater decrease (Expand Search)
gap decrease » gain decreased (Expand Search), step decrease (Expand Search), _ decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
gap decrease » gain decreased (Expand Search), step decrease (Expand Search), _ decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1981
Key safety measures including adverse events.
Published 2025“…Waist circumference (mean change (MC) −2.23 cm; 95% CI [−3.98, −0.49]; <i>p</i> = 0.01), BMI (MC −0.49 kg/m<sup>2</sup>; 95% CI [−0.88, −0.10[; <i>p</i> = 0.01), and android fat mass measured by DXA (MC −167 g; 95% CI [−264, −71[; <i>p</i> < 0.001) decreased in the COCP group over the study period whilst there was no statistically significant changes in these parameters in the metformin only group when compared to baseline.. …”
-
1982
-
1983
-
1984
-
1985
-
1986
Bluetooth beacons with colour coded lanyards.
Published 2025“…At both intervention sites, there was a significant reduction in antimicrobial utilization of 47% (Kenya) and 33% (Uganda) compared to baseline. …”
-
1987
A Comparison of Pediatric Prehospital Opioid Encounters and Social Vulnerability
Published 2024“…The analysis demonstrated that as socioeconomic status (SES) improves, the likelihood of opioid-related activations increases significantly supported by a significant negative linear trend (Estimate = −0.2971, SE = 0.1172, z = −2.54, <i>p</i> = 0.0112. …”
-
1988
-
1989
-
1990
-
1991
Structure diagram of ensemble model.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1992
Fitting formula parameter table.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1993
Test plan.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1994
Fitting surface parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1995
Model generalisation validation error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1996
Empirical model prediction error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1997
Fitting curve parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1998
Test instrument.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
1999
Empirical model establishment process.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
2000
Model prediction error trend chart.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”