Showing 501 - 520 results of 3,691 for search 'significant ((((((gap decrease) OR (teer decrease))) OR (nn decrease))) OR (mean decrease))', query time: 0.37s Refine Results
  1. 501
  2. 502
  3. 503
  4. 504
  5. 505
  6. 506
  7. 507
  8. 508
  9. 509
  10. 510

    Sound stress exposure prolonged the period of decreased withdrawal threshold after complete Freund’s adjuvant (CFA) injection. by Satoka Kasai (3861115)

    Published 2025
    “…(B) 50% withdrawal threshold in CFA-treated mice exposed to sound stress. They showed a significant decrease in 50% withdrawal threshold on day 7 after CFA injection, and CFA-treated mice exposed to sound stress showed a significant decrease in 50% withdrawal threshold during days 7–21 after CFA injection (CFA, on day 7, ****<i>P</i> < 0.001 vs day 0, on day 10, ***<i>P</i> < 0.001 vs day0; CFA + stress, day 7, 10, 14, and 21, ****<i>P</i> < 0.0001 vs day 0, Dunnett’s test). …”
  11. 511

    Preference for the EIA – conjoint results. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  12. 512

    Sample attribute table. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  13. 513

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  14. 514

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  15. 515

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  16. 516

    Methodological flowchart. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  17. 517

    Preference for the EIA vs. ETA across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  18. 518
  19. 519

    Decreased synthesis of VCAM-1, tubulin and dynein proteins in the heart of mice stimulated with EVs (green) or ICs (blue). by Alberto Cornet-Gomez (10676133)

    Published 2025
    “…The values represent the mean ± SEM, with significance set at p < 0.05 (*).…”
  20. 520