Showing 2,361 - 2,380 results of 18,112 for search 'significant ((((((shape decrease) OR (we decrease))) OR (a decrease))) OR (small decrease))', query time: 0.65s Refine Results
  1. 2361
  2. 2362
  3. 2363
  4. 2364
  5. 2365
  6. 2366
  7. 2367

    Datasets used in the study. by Rajon Banik (12066099)

    Published 2025
    “…</p><p>Conclusion</p><p>The findings indicate a significant increase in the availability of health facilities offering modern family planning services in Bangladesh; however, a slight decline has been observed in their overall mean readiness score. …”
  8. 2368
  9. 2369

    Data Sheet 1_Population pharmacokinetics/pharmacodynamics and safety of YPEG-rhGH in elderly subjects.docx by Yajie He (20323682)

    Published 2025
    “…<p>Y-shape branched PEGylated recombinant human growth hormone (YPEG-rhGH) is a suitable drug for the treatment of growth hormone deficiency. …”
  10. 2370
  11. 2371

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  12. 2372

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  13. 2373

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  14. 2374

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  15. 2375

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  16. 2376

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  17. 2377
  18. 2378

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  19. 2379

    Hydrate-Based Gas Storage Made Greener: Methane Hydrate Formation Enhancement with a Low-Toxicity Promoter by Katipot Inkong (7979942)

    Published 2025
    “…Additionally, the effect of pressure variations (from 8 to 4 MPa at 288.2 K) was analyzed, revealing that a lower pressure decreases both the gas uptake and formation kinetics due to a reduced driving force. …”
  20. 2380