Showing 17,861 - 17,880 results of 18,113 for search 'significant ((((((small decrease) OR (step decrease))) OR (we decrease))) OR (a decrease))', query time: 0.62s Refine Results
  1. 17861

    Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  2. 17862

    Table 2_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.csv by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  3. 17863

    Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  4. 17864

    Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  5. 17865

    Table 1_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.csv by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  6. 17866

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  7. 17867

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  8. 17868

    Table 1_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.docx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  9. 17869

    An overview of the selection process for studies. by Kuo-Chuan Hung (8587392)

    Published 2024
    “…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
  10. 17870

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  11. 17871

    Image 1_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.tiff by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  12. 17872

    Table 2_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.xlsx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  13. 17873

    Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite‑1 by Shiying Li (381113)

    Published 2024
    “…The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. …”
  14. 17874

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  15. 17875

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  16. 17876

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  17. 17877

    Image 1_Augmentation of bone formation by sympathectomy in rats as evaluated by [99mTc]Tc-MDP.png by Zili Cai (15238729)

    Published 2025
    “…</p>Materials and methods<p>Twenty rats were randomly assigned to a superior cervical ganglionectomy (SCGx) group (n = 10) or a sham-operated control group (n = 10). …”
  18. 17878

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  19. 17879

    Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  20. 17880

    Image 1_Exploring the role of mitochondrial metabolism and immune infiltration in myocardial infarction: novel insights from bioinformatics and experimental validation.tif by Jingyi Hou (698975)

    Published 2025
    “…This study aimed to clarify the roles of mitochondrial metabolism and immune infiltration in MI, using a combination of bioinformatics analyses and experimental validation.…”