Showing 4,921 - 4,940 results of 18,354 for search 'significant ((((((step decrease) OR (a decrease))) OR (greatest decrease))) OR (mean decrease))', query time: 0.74s Refine Results
  1. 4921
  2. 4922

    Primers used in ChIP-PCR. by Lorenza Cutrone (21144285)

    Published 2025
    “…In lymphatic endothelial cells infected with KSHV and in gastric cancer cells positive for EBV, ectopic HSF2 enhances the expression of lytic genes; While knocking down HSF2 significantly decreases their expression. HSF2 overexpression is accompanied by decreased levels of repressive histone marks at the promoters of the lytic regulators KSHV ORF50 and EBV BZLF1, both characterized by poised chromatin features. …”
  3. 4923

    Primers used in RTqPCR. by Lorenza Cutrone (21144285)

    Published 2025
    “…In lymphatic endothelial cells infected with KSHV and in gastric cancer cells positive for EBV, ectopic HSF2 enhances the expression of lytic genes; While knocking down HSF2 significantly decreases their expression. HSF2 overexpression is accompanied by decreased levels of repressive histone marks at the promoters of the lytic regulators KSHV ORF50 and EBV BZLF1, both characterized by poised chromatin features. …”
  4. 4924
  5. 4925
  6. 4926
  7. 4927
  8. 4928
  9. 4929
  10. 4930
  11. 4931
  12. 4932

    Image6_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  13. 4933

    Image3_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  14. 4934

    Image4_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  15. 4935

    Table3_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  16. 4936

    Table2_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  17. 4937

    Image5_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  18. 4938

    Image1_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  19. 4939

    Image2_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  20. 4940

    Table1_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”