Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
3521
-
3522
Chemogenetic inhibition of Calcrl<sup>+</sup> neurons attenuates chronic itch in multiple chronic itch models.
Published 2025“…Data are presented as mean ± SEM (ns: not significant, **p < 0.01, ***p < 0.001). …”
-
3523
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3524
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3525
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3526
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3527
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3528
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3529
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3530
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3531
Primers for qPCR.
Published 2025“…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
-
3532
Antibodies used for western blotting.
Published 2025“…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
-
3533
Target sequences of siRNAs.
Published 2025“…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
-
3534
Plasmids information.
Published 2025“…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
-
3535
Raw data.
Published 2025“…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
-
3536
S1 File -
Published 2024“…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
-
3537
Experimental treatments and groups.
Published 2024“…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
-
3538
Primers for RT-qPCR.
Published 2024“…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
-
3539
Annual distribution of IG-ralated AE reports.
Published 2025“…We used Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) for signal detection. …”
-
3540
Proportion of AEs by SOCs in pregnant women.
Published 2025“…We used Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) for signal detection. …”