يعرض 2,301 - 2,320 نتائج من 8,891 نتيجة بحث عن 'significant ((((((step decrease) OR (we decrease))) OR (teer decrease))) OR (mean decrease))', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 2301
  2. 2302
  3. 2303
  4. 2304
  5. 2305
  6. 2306

    Statins resulted in smaller neuronal soma size. حسب Shuk C. Tsoi (21192243)

    منشور في 2025
    "…Within control birds, the BrdU + /Hu+ neuron population was significantly smaller in soma size than the BrdU-/Hu+ older, heterogeneous population (A). …"
  7. 2307
  8. 2308
  9. 2309
  10. 2310

    The overall framework of CARAFE. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  11. 2311

    KPD-YOLOv7-GD network structure diagram. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  12. 2312

    Comparison experiment of accuracy improvement. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  13. 2313

    Comparison of different pruning rates. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  14. 2314

    Comparison of experimental results at ablation. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  15. 2315

    Result of comparison of different lightweight. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  16. 2316

    DyHead Structure. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  17. 2317

    The parameters of the training phase. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  18. 2318

    Structure of GSConv network. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  19. 2319

    Comparison experiment of accuracy improvement. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  20. 2320

    Improved model distillation structure. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"