Showing 2,901 - 2,920 results of 8,689 for search 'significant ((((((we decrease) OR (nn decrease))) OR (teer decrease))) OR (mean decrease))', query time: 0.44s Refine Results
  1. 2901

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  2. 2902

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  3. 2903

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  4. 2904

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  5. 2905

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  6. 2906

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  7. 2907

    Gene expression of neurotransmitter pathways at 6 dp. by Morgan Barnes (7876373)

    Published 2025
    “…In the 24 hpf dnVDRa induced group we see a significant decrease in glyt1 expression (p < 0.05) and an increase in glyt2 expression (p < 0.05) and in slc32a1 expression (p < 0.01). …”
  8. 2908

    PCAIs inhibit NCI-H23 cell line viability. by Matthew D. Gregory (19929096)

    Published 2024
    “…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
  9. 2909

    PCAIs disrupt actin filaments in NCI-H23 cells. by Matthew D. Gregory (19929096)

    Published 2024
    “…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
  10. 2910

    PCAIs suppress 3D NCI-H23 cell invasion. by Matthew D. Gregory (19929096)

    Published 2024
    “…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
  11. 2911

    PCAIs suppress NCI-H23 cancer cell migration. by Matthew D. Gregory (19929096)

    Published 2024
    “…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
  12. 2912

    PCAIs induce apoptosis in NCI-H23 cells. by Matthew D. Gregory (19929096)

    Published 2024
    “…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
  13. 2913
  14. 2914

    Validation of the optimum formula. by Randa Mohammed Zaki (21637175)

    Published 2025
    “…<div><p>The goal of this study was the formulation and optimization by statistical means of bilosomal formulations of axitinib (AXT) in order to improve its anticancer efficacy in a targeted manner. …”
  15. 2915
  16. 2916
  17. 2917
  18. 2918

    Parameters of VMR separated by light or dark periods run at 6 dpf. by Morgan Barnes (7876373)

    Published 2025
    “…(I-K) VMR parameters in dnVDRa induced zebrafish at 72 hpf. There is a significant decrease in distance moved (p < 0.05), a significant decrease in velocity the light period (p < 0.05) and a significant decrease in activity state in the light periods (p < 0.05) in the 72 + fish. …”
  19. 2919
  20. 2920