Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
8041
Table 2_Impact of temperature trend-defined seasonality on psoriasis treatment outcomes: a multicenter longitudinal study.docx
Published 2025“…</p>Objective<p>To assess the impact of a novel temperature trend-defined seasonality on psoriasis treatment responses at 2 and 3 months.…”
-
8042
-
8043
Parameters of VMR separated by light or dark periods run at 6 dpf.
Published 2025“…(E-H) VMR parameters in dnVDRa induced zebrafish at 48 hpf. There is a significant decrease in distance moved in the dark (p < 0.01) and light (p < 0.05) periods, a significant decrease in velocity in the dark (p < 0.05) and light (p < 0.01) periods, a significant decrease in activity state in the dark (p < 0.05) and light (p < 0.01) periods and a significant increase in distance to point in the light period (p < 0.01) in the 48 + fish. …”
-
8044
PCA-CGAN model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8045
MIT-BIH dataset proportion analysis chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8046
Wavelet transform preprocessing results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8047
PCAECG_GAN.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8048
MIT dataset expansion quantities and Proportions.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8049
Experimental hardware and software environment.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8050
PCA-CGAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8051
Classification model parameter settings.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8052
MIT-BIH expanded dataset proportion chart.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8053
AUROC Graphs of RF Model and ResNet.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8054
PCA-CGAN Model Workflow Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8055
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8056
PCA-CGAN model convergence curve.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8057
PCA-CGAN Structure Diagram.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8058
Comparison of Model Five-classification Results.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8059
PCAECG-GAN K-fold experiment table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
-
8060
PCA-CGAN Pseudocode Table.
Published 2025“…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”