Showing 8,041 - 8,060 results of 18,313 for search 'significant ((((a decrease) OR (((greatest decrease) OR (nn decrease))))) OR (mean decrease))', query time: 0.58s Refine Results
  1. 8041

    Table 2_Impact of temperature trend-defined seasonality on psoriasis treatment outcomes: a multicenter longitudinal study.docx by Xinyi Song (2207233)

    Published 2025
    “…</p>Objective<p>To assess the impact of a novel temperature trend-defined seasonality on psoriasis treatment responses at 2 and 3 months.…”
  2. 8042
  3. 8043

    Parameters of VMR separated by light or dark periods run at 6 dpf. by Morgan Barnes (7876373)

    Published 2025
    “…(E-H) VMR parameters in dnVDRa induced zebrafish at 48 hpf. There is a significant decrease in distance moved in the dark (p < 0.01) and light (p < 0.05) periods, a significant decrease in velocity in the dark (p < 0.05) and light (p < 0.01) periods, a significant decrease in activity state in the dark (p < 0.05) and light (p < 0.01) periods and a significant increase in distance to point in the light period (p < 0.01) in the 48 + fish. …”
  4. 8044

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  5. 8045

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  6. 8046

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  7. 8047

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  8. 8048

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  9. 8049

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  10. 8050

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  11. 8051

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  12. 8052

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  13. 8053

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  14. 8054

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  15. 8055

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  16. 8056

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  17. 8057

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  18. 8058

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  19. 8059

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  20. 8060

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”