Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5701
-
5702
-
5703
-
5704
-
5705
Number of visits per clinic type, 2013-2015.
Published 2025“…During PE, statistically significant longer waiting times were found for surgery (+1.0 day) and imaging (+1.1 days), while a 2.4 days decrease was noted in pediatrics, controlled for age, sex, ethnicity and the daily number of visits. …”
-
5706
Study Data.
Published 2025“…It has also been hypothesized that the bradycardia and rare instances of cardiac arrest occurring after the use of sugammadex may be due to a transient decrease in circulating corticosteroids, causing a temporary ‘mini Addisonian crisis.’ …”
-
5707
Study outcomes.
Published 2025“…It has also been hypothesized that the bradycardia and rare instances of cardiac arrest occurring after the use of sugammadex may be due to a transient decrease in circulating corticosteroids, causing a temporary ‘mini Addisonian crisis.’ …”
-
5708
Patient characteristics.
Published 2025“…It has also been hypothesized that the bradycardia and rare instances of cardiac arrest occurring after the use of sugammadex may be due to a transient decrease in circulating corticosteroids, causing a temporary ‘mini Addisonian crisis.’ …”
-
5709
-
5710
-
5711
Table1_Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy.docx
Published 2024“…Objective<p>Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). …”
-
5712
Image1_Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy.tif
Published 2024“…Objective<p>Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). …”
-
5713
DataSheet1_The β2-adrenergic biased agonist nebivolol inhibits the development of Th17 and the response of memory Th17 cells in an NF-κB-dependent manner.docx
Published 2024“…</p>Results<p>Nebivolol treatment decreased IL-17A and IFN-γ secretion by activated memory Th cells and elevated IL-4 levels. …”
-
5714
Testing set error.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5715
Internal structure of an LSTM cell.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5716
Prediction effect of each model after STL.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5717
The kernel density plot for data of each feature.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5718
Analysis of raw data prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5719
Flowchart of the STL.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
5720
SARIMA predicts season components.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”