Showing 781 - 800 results of 9,650 for search 'significant ((((gap decrease) OR (((greater decrease) OR (we decrease))))) OR (mean decrease))', query time: 0.45s Refine Results
  1. 781
  2. 782
  3. 783
  4. 784
  5. 785
  6. 786
  7. 787
  8. 788
  9. 789
  10. 790
  11. 791
  12. 792

    Sound stress exposure prolonged the period of decreased withdrawal threshold after complete Freund’s adjuvant (CFA) injection. by Satoka Kasai (3861115)

    Published 2025
    “…(B) 50% withdrawal threshold in CFA-treated mice exposed to sound stress. They showed a significant decrease in 50% withdrawal threshold on day 7 after CFA injection, and CFA-treated mice exposed to sound stress showed a significant decrease in 50% withdrawal threshold during days 7–21 after CFA injection (CFA, on day 7, ****<i>P</i> < 0.001 vs day 0, on day 10, ***<i>P</i> < 0.001 vs day0; CFA + stress, day 7, 10, 14, and 21, ****<i>P</i> < 0.0001 vs day 0, Dunnett’s test). …”
  13. 793
  14. 794

    Model selection based on best fit. by Angelina Mageni Lutambi (22097223)

    Published 2025
    “…The results showed that malaria incidence decreased with greater variance across Tanzania. Mean malaria incidence decreased from 0.347 (95% CI: 0.336, 0.357) in 2000 to 0.118 (95% CI: 0.114, 0.122) in 2020, relative to the increasing insecticide-treated bednets (ITNs) coverage (0.037; 95% CI: 0.036, 0.039 in 2000 to 0.496; 95% CI: 0.476, 0.517 in 2020). …”
  15. 795

    Preference for the EIA – conjoint results. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  16. 796

    Sample attribute table. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  17. 797

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  18. 798

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  19. 799

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  20. 800

    Methodological flowchart. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”