Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
gap decrease » gain decreased (Expand Search), step decrease (Expand Search), _ decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
gap decrease » gain decreased (Expand Search), step decrease (Expand Search), _ decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
621
Preference for the EIA – conjoint results.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
622
Sample attribute table.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
623
Subgroup analysis – Political affiliation.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
624
Sample scenario description.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
625
AMCEs – Pooled across scenarios.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
626
Methodological flowchart.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
627
Preference for the EIA vs. ETA across scenarios.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
628
-
629
-
630
-
631
The Date.
Published 2025“…Secondly, the daily minimum and maximum temperatures increased significantly, which were 0.395°C/10a and 0.200°C/10a respectively<b>—</b>less than the national mean. …”
-
632
Variation curve of the extreme temperature index.
Published 2025“…Secondly, the daily minimum and maximum temperatures increased significantly, which were 0.395°C/10a and 0.200°C/10a respectively<b>—</b>less than the national mean. …”
-
633
-
634
-
635
CIE L*a*b* color space values of urine measured by a spectrophotometer showed significant correlations with Uturb as observed through visual examination.
Published 2025“…<p>(A) The increase in Uturb was significantly correlated with a decrease in urine brightness (L*). …”
-
636
-
637
-
638
-
639
-
640
Summary of post-treatment disease course measures from MDMA-AT publications.
Published 2025Subjects: