Showing 681 - 700 results of 4,823 for search 'significant ((((gap decrease) OR (((nn decrease) OR (greater decrease))))) OR (mean decrease))', query time: 0.52s Refine Results
  1. 681

    Fig 4 - by Takafumi Kabuto (14797727)

    Published 2024
    Subjects:
  2. 682

    Fig 6 - by Takafumi Kabuto (14797727)

    Published 2024
    Subjects:
  3. 683

    Fig 5 - by Takafumi Kabuto (14797727)

    Published 2024
    Subjects:
  4. 684
  5. 685
  6. 686
  7. 687
  8. 688
  9. 689
  10. 690
  11. 691
  12. 692
  13. 693
  14. 694
  15. 695

    Sound stress exposure prolonged the period of decreased withdrawal threshold after complete Freund’s adjuvant (CFA) injection. by Satoka Kasai (3861115)

    Published 2025
    “…(B) 50% withdrawal threshold in CFA-treated mice exposed to sound stress. They showed a significant decrease in 50% withdrawal threshold on day 7 after CFA injection, and CFA-treated mice exposed to sound stress showed a significant decrease in 50% withdrawal threshold during days 7–21 after CFA injection (CFA, on day 7, ****<i>P</i> < 0.001 vs day 0, on day 10, ***<i>P</i> < 0.001 vs day0; CFA + stress, day 7, 10, 14, and 21, ****<i>P</i> < 0.0001 vs day 0, Dunnett’s test). …”
  16. 696

    Preference for the EIA – conjoint results. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  17. 697

    Sample attribute table. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  18. 698

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  19. 699

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  20. 700

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”