Showing 3,641 - 3,660 results of 9,103 for search 'significant ((((gap decrease) OR (((step decrease) OR (we decrease))))) OR (mean decrease))', query time: 0.55s Refine Results
  1. 3641
  2. 3642
  3. 3643

    Chemogenetic inhibition of Calcrl<sup>+</sup> neurons attenuates chronic itch in multiple chronic itch models. by Huifeng Jiao (11537806)

    Published 2025
    “…Data are presented as mean ± SEM (ns: not significant, **p < 0.01, ***p < 0.001). …”
  4. 3644

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  5. 3645

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  6. 3646

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  7. 3647

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  8. 3648

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  9. 3649

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  10. 3650

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  11. 3651

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  12. 3652

    Primers for qPCR. by Kaitao Zhao (3617825)

    Published 2025
    “…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  13. 3653

    Antibodies used for western blotting. by Kaitao Zhao (3617825)

    Published 2025
    “…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  14. 3654

    Target sequences of siRNAs. by Kaitao Zhao (3617825)

    Published 2025
    “…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  15. 3655

    Plasmids information. by Kaitao Zhao (3617825)

    Published 2025
    “…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  16. 3656

    Raw data. by Kaitao Zhao (3617825)

    Published 2025
    “…Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  17. 3657

    S1 File - by Luqiong Liu (11537092)

    Published 2024
    “…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
  18. 3658

    Experimental treatments and groups. by Luqiong Liu (11537092)

    Published 2024
    “…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
  19. 3659

    Primers for RT-qPCR. by Luqiong Liu (11537092)

    Published 2024
    “…Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. …”
  20. 3660

    Annual distribution of IG-ralated AE reports. by Shaozhi Liu (13720340)

    Published 2025
    “…We used Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) for signal detection. …”