يعرض 2,181 - 2,200 نتائج من 4,812 نتيجة بحث عن 'significant ((((gap decrease) OR (((teer decrease) OR (greater decrease))))) OR (mean decrease))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 2181
  2. 2182
  3. 2183
  4. 2184
  5. 2185
  6. 2186
  7. 2187
  8. 2188
  9. 2189
  10. 2190

    The loss of bone in the femoral distal epiphysis is affected by housing type and weightlessness conditions in microgravity. حسب Rukmani Cahill (20939813)

    منشور في 2025
    "…(F) Conn.D is decreased in FL. Data shown are the mean ±  standard deviation with a scatter plot (ns: non-significant, * : p <  0.033, **: p <  0.002, ***: p <  0.0002). …"
  11. 2191
  12. 2192

    The overall framework of CARAFE. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  13. 2193

    KPD-YOLOv7-GD network structure diagram. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  14. 2194

    Comparison experiment of accuracy improvement. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  15. 2195

    Comparison of different pruning rates. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  16. 2196

    Comparison of experimental results at ablation. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  17. 2197

    Result of comparison of different lightweight. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  18. 2198

    DyHead Structure. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  19. 2199

    The parameters of the training phase. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
  20. 2200

    Structure of GSConv network. حسب Zhongjian Xie (4633099)

    منشور في 2025
    "…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"