Search alternatives:
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
gap decrease » gain decreased (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
gap decrease » gain decreased (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
17401
Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17402
Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17403
Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17404
Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17405
Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17406
Table 1_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.docx
Published 2025“…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
-
17407
An overview of the selection process for studies.
Published 2024“…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
-
17408
Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17409
Table 2_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.xlsx
Published 2025“…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
-
17410
Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite‑1
Published 2024“…The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. …”
-
17411
Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway....
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17412
Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17413
Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17414
Image 1_Augmentation of bone formation by sympathectomy in rats as evaluated by [99mTc]Tc-MDP.png
Published 2025“…</p>Materials and methods<p>Twenty rats were randomly assigned to a superior cervical ganglionectomy (SCGx) group (n = 10) or a sham-operated control group (n = 10). …”
-
17415
Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17416
The threshold effect analysis of the BRI on HGS.
Published 2025“…<div><p>Background</p><p>Sarcopenic obesity is characterized by a combination of obesity and sarcopenia. Body round index (BRI) is a novel anthropometric index that can more accurately assess body and visceral fat levels than body mass index or waist circumference. …”
-
17417
Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
-
17418
Image 1_Exploring the role of mitochondrial metabolism and immune infiltration in myocardial infarction: novel insights from bioinformatics and experimental validation.tif
Published 2025“…This study aimed to clarify the roles of mitochondrial metabolism and immune infiltration in MI, using a combination of bioinformatics analyses and experimental validation.…”
-
17419
Characteristics of studies (<i>n</i> = 22).
Published 2024“…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
-
17420
Table 6_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx
Published 2025“…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”