Showing 901 - 920 results of 9,062 for search 'significant ((((gap decrease) OR (((we decrease) OR (greatest decrease))))) OR (mean decrease))', query time: 0.67s Refine Results
  1. 901
  2. 902
  3. 903
  4. 904
  5. 905
  6. 906

    Microhardness vs. depth diagram of sample No. 6 ( by Van-Thuc Nguyen (19469762)

    Published 2025
    “…The Travel speed factor appears to have the greatest effect, followed by the gas flow rate and current intensity. …”
  7. 907

    Multi-organ differential gene expression changes statistically significant at hypertension onset. by Eden Hornung (20148295)

    Published 2024
    “…<i>Tgfb1</i> is significantly decreased in male SHR kidney compared to female at 16 weeks of age (p = 0.004). …”
  8. 908

    Key safety measures including adverse events. by Anuja Dokras (8679261)

    Published 2025
    “…Waist circumference (mean change (MC) −2.23 cm; 95% CI [−3.98, −0.49]; <i>p</i> = 0.01), BMI (MC −0.49 kg/m<sup>2</sup>; 95% CI [−0.88, −0.10[; <i>p</i> = 0.01), and android fat mass measured by DXA (MC −167 g; 95% CI [−264, −71[; <i>p</i> < 0.001) decreased in the COCP group over the study period whilst there was no statistically significant changes in these parameters in the metformin only group when compared to baseline.. …”
  9. 909
  10. 910
  11. 911
  12. 912

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  13. 913

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  14. 914

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  15. 915

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  16. 916

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  17. 917

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  18. 918

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  19. 919

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  20. 920

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”