Showing 17,441 - 17,460 results of 17,927 for search 'significant ((((gap decrease) OR (step decrease))) OR (a decrease))', query time: 0.66s Refine Results
  1. 17441
  2. 17442

    Iron biofortification of <i>Pleurotus eous</i> via substrate supplementation by D. Leena Lavanya (21676675)

    Published 2025
    “…The results showed that while calcium and boron levels have decreased, a few minerals, including sodium, potassium, phosphorus, magnesium, zinc, and copper, have increased significantly (<i>p</i> < .05). …”
  3. 17443

    Image 1_The microbiome exists in the neuroretina and choroid in normal conditions and responds rapidly to retinal injury.tif by Xuexue Cui (11574637)

    Published 2025
    “…In the RPE/choroid, the abundance of Actinomyces and Roseburia decreased, and the abundance of Lactobacillus increased significantly after laser injury. …”
  4. 17444

    Table 1_Exogenous jasmonic acid and salicylic acid enhance selenium uptake and mitigate cadmium accumulation in pak choi (Brassica chinensis L.) grown in selenium-rich, high-cadmiu... by Jin-Ping Chen (6003755)

    Published 2025
    “…Cd accumulation in shoots decreased by 11.7%-29.3% in JA-containing treatments, with the same combined producing the lowest shoot Cd levels. …”
  5. 17445

    Cell viability and comparison of cells’ reactive oxygen species (ROS) in stress environments. by Merve Gozel (21982654)

    Published 2025
    “…Results are presented as *** P < 0.001. ROS levels were significantly decreased under stress conditions in the co-cultured cells.…”
  6. 17446

    Risk of bias across 22 included studie. by Kuo-Chuan Hung (8587392)

    Published 2024
    “…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
  7. 17447

    Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  8. 17448

    Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  9. 17449

    Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  10. 17450

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  11. 17451

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  12. 17452

    Table 1_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.docx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  13. 17453

    An overview of the selection process for studies. by Kuo-Chuan Hung (8587392)

    Published 2024
    “…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
  14. 17454

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  15. 17455

    Table 2_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.xlsx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  16. 17456

    Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite‑1 by Shiying Li (381113)

    Published 2024
    “…The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. …”
  17. 17457

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  18. 17458

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  19. 17459

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  20. 17460

    Image 1_Augmentation of bone formation by sympathectomy in rats as evaluated by [99mTc]Tc-MDP.png by Zili Cai (15238729)

    Published 2025
    “…</p>Materials and methods<p>Twenty rats were randomly assigned to a superior cervical ganglionectomy (SCGx) group (n = 10) or a sham-operated control group (n = 10). …”