Showing 141 - 160 results of 17,883 for search 'significant ((((gap decrease) OR (teer decrease))) OR (a decrease))', query time: 0.49s Refine Results
  1. 141
  2. 142

    Significant repeated measurements sEMG outcomes. by María Benito-de-Pedro (22057468)

    Published 2025
    “…<div><p>Lateral ankle sprain (LAS) is a very common injury in the world of basketball. …”
  3. 143

    Significant single measurement sEMG outcomes. by María Benito-de-Pedro (22057468)

    Published 2025
    “…<div><p>Lateral ankle sprain (LAS) is a very common injury in the world of basketball. …”
  4. 144
  5. 145
  6. 146
  7. 147

    Cinacalcet administered early in the inactive phase markedly decrease parathyroid Ki-67 index. by Søren Egstrand (10906087)

    Published 2025
    “…All groups were compared by Kruskal Wallis test with <i>post hoc</i> test after Dunn with Bonferroni adjustment showing significant decreased Ki-67 labeling index of <i>Cina1</i> compared to <i>Cina2</i> (p = 0.006) and the untreated CKD groups (p = 0.0001 and p = 0.0002, respectively). …”
  8. 148
  9. 149
  10. 150

    Table 2 - by Rosanna Mary Rooney (17595801)

    Published 2024
    “…Despite a global decrease over the last 30 years, youth crime remains prevalent. …”
  11. 151

    Preference for the EIA – conjoint results. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  12. 152

    Marginal means – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  13. 153

    Sample attribute table. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  14. 154

    Subgroup analysis – Political affiliation. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  15. 155

    Sample scenario description. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  16. 156

    AMCEs – Pooled across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  17. 157

    Methodological flowchart. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  18. 158

    Preference for the EIA vs. ETA across scenarios. by Mehdi Mourali (10170245)

    Published 2025
    “…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
  19. 159
  20. 160