Showing 4,161 - 4,180 results of 18,396 for search 'significant ((((shape decrease) OR (((mean decrease) OR (a decrease))))) OR (small decrease))', query time: 0.51s Refine Results
  1. 4161
  2. 4162
  3. 4163

    Table 1_Enhancement of oxaliplatin efficacy and amelioration of intestinal epithelial damage by Lactobacillus rhamnosus GG through modulation of gut microbiota.xlsx by Zijie Zhang (2543533)

    Published 2025
    “…Background<p>Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide, necessitating extensive research into effective treatment strategies. …”
  4. 4164
  5. 4165
  6. 4166
  7. 4167

    Generated spline library. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  8. 4168

    Correlation coefficient matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  9. 4169

    RMSE versus learning rate. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  10. 4170

    RMSE versus training parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  11. 4171

    Assembly process of machine recognition form. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  12. 4172

    Process of steel truss incremental launching. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  13. 4173

    CGAN and AutoML stacking device. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  14. 4174

    U-wave estimates versus R-matrix noise variance. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  15. 4175

    Sliding window process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  16. 4176

    Original record form of error matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  17. 4177

    Form for machine recognition. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  18. 4178

    RMSE versus architectural parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  19. 4179

    Kalman process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  20. 4180

    Attention mechanism. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”