Search alternatives:
shape decrease » shape increases (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
small decrease » small increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
shape decrease » shape increases (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
small decrease » small increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1821
Test plan table.
Published 2025“…The experimental results show that, compared with the conventional airfoil-shaped subsoiler, the supersonic gas jet subsoiler achieves optimal performance at a tillage speed of 0.5 m/s and a tillage depth of 380 mm. …”
-
1822
Gas jet subsoiling model.
Published 2025“…The experimental results show that, compared with the conventional airfoil-shaped subsoiler, the supersonic gas jet subsoiler achieves optimal performance at a tillage speed of 0.5 m/s and a tillage depth of 380 mm. …”
-
1823
Schematic diagram of the airflow passage.
Published 2025“…The experimental results show that, compared with the conventional airfoil-shaped subsoiler, the supersonic gas jet subsoiler achieves optimal performance at a tillage speed of 0.5 m/s and a tillage depth of 380 mm. …”
-
1824
Variation in soil penetration resistance.
Published 2025“…The experimental results show that, compared with the conventional airfoil-shaped subsoiler, the supersonic gas jet subsoiler achieves optimal performance at a tillage speed of 0.5 m/s and a tillage depth of 380 mm. …”
-
1825
Supersonic gas jet subsoiler experiment.
Published 2025“…The experimental results show that, compared with the conventional airfoil-shaped subsoiler, the supersonic gas jet subsoiler achieves optimal performance at a tillage speed of 0.5 m/s and a tillage depth of 380 mm. …”
-
1826
-
1827
-
1828
-
1829
-
1830
-
1831
-
1832
-
1833
-
1834
-
1835
-
1836
-
1837
Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer
Published 2024“…Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
-
1838
Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer
Published 2024“…Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
-
1839
Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer
Published 2024“…Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
-
1840
Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer
Published 2024“…Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”