Showing 1,021 - 1,040 results of 18,441 for search 'significant ((((shape decrease) OR (((we decrease) OR (a decrease))))) OR (mean decrease))', query time: 0.73s Refine Results
  1. 1021
  2. 1022
  3. 1023
  4. 1024
  5. 1025
  6. 1026
  7. 1027
  8. 1028
  9. 1029
  10. 1030
  11. 1031

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  12. 1032

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  13. 1033

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  14. 1034

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  15. 1035

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  16. 1036

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  17. 1037

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  18. 1038

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  19. 1039

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”
  20. 1040

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…We systematically investigate the impact of water content, dry density, and freeze-thaw cycles (with a freezing temperature set at -10°C) on the thermal conductivity of stabilized soil, a crucial parameter for analyzing soil temperature fields that is influenced by numerous factors. …”