Showing 201 - 220 results of 7,397 for search 'significant ((((shape decrease) OR (small decrease))) OR (((step decrease) OR (we decrease))))', query time: 0.38s Refine Results
  1. 201

    Generated spline library. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  2. 202

    Correlation coefficient matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  3. 203

    RMSE versus learning rate. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  4. 204

    RMSE versus training parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  5. 205

    Assembly process of machine recognition form. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  6. 206

    Process of steel truss incremental launching. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  7. 207

    CGAN and AutoML stacking device. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  8. 208

    U-wave estimates versus R-matrix noise variance. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  9. 209

    Sliding window process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  10. 210

    Assembly error angle of a single spline. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  11. 211

    Original record form of error matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  12. 212

    Form for machine recognition. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  13. 213

    RMSE versus architectural parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  14. 214

    Kalman process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  15. 215

    Attention mechanism. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  16. 216
  17. 217
  18. 218
  19. 219
  20. 220