Search alternatives:
shape decrease » shape increases (Expand Search), small decrease (Expand Search), showed decreased (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
shape decrease » shape increases (Expand Search), small decrease (Expand Search), showed decreased (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
-
341
-
342
-
343
-
344
Generated spline library.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
345
Correlation coefficient matrix.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
346
RMSE versus learning rate.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
347
RMSE versus training parameters.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
348
Assembly process of machine recognition form.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
349
Process of steel truss incremental launching.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
350
CGAN and AutoML stacking device.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
351
U-wave estimates versus R-matrix noise variance.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
352
Sliding window process.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
353
Assembly error angle of a single spline.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
354
Original record form of error matrix.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
355
Form for machine recognition.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
356
RMSE versus architectural parameters.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
357
Kalman process.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
358
Attention mechanism.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
359
-
360