Showing 17,481 - 17,500 results of 17,959 for search 'significant ((((step decrease) OR (((greatest decrease) OR (nn decrease))))) OR (a decrease))', query time: 0.77s Refine Results
  1. 17481

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  2. 17482

    Image 1_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.tiff by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  3. 17483

    Table 2_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.xlsx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  4. 17484

    Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite‑1 by Shiying Li (381113)

    Published 2024
    “…The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. …”
  5. 17485

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  6. 17486

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  7. 17487

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  8. 17488

    Image 1_Augmentation of bone formation by sympathectomy in rats as evaluated by [99mTc]Tc-MDP.png by Zili Cai (15238729)

    Published 2025
    “…</p>Materials and methods<p>Twenty rats were randomly assigned to a superior cervical ganglionectomy (SCGx) group (n = 10) or a sham-operated control group (n = 10). …”
  9. 17489

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  10. 17490

    The threshold effect analysis of the BRI on HGS. by Zhihao Wei (10909679)

    Published 2025
    “…<div><p>Background</p><p>Sarcopenic obesity is characterized by a combination of obesity and sarcopenia. Body round index (BRI) is a novel anthropometric index that can more accurately assess body and visceral fat levels than body mass index or waist circumference. …”
  11. 17491

    Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  12. 17492

    Image 1_Exploring the role of mitochondrial metabolism and immune infiltration in myocardial infarction: novel insights from bioinformatics and experimental validation.tif by Jingyi Hou (698975)

    Published 2025
    “…This study aimed to clarify the roles of mitochondrial metabolism and immune infiltration in MI, using a combination of bioinformatics analyses and experimental validation.…”
  13. 17493

    Table 3_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.csv by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  14. 17494

    Characteristics of studies (<i>n</i> = 22). by Kuo-Chuan Hung (8587392)

    Published 2024
    “…Trial sequential analysis (TSA) was conducted to validate the reliability.</p><p>Results</p><p>A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3–0.57) and 4–6-week (RR, 0.47; 95%CI, 0.35–0.63) follow-ups. …”
  15. 17495

    Table 6_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  16. 17496

    Data Sheet 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  17. 17497

    Table 7_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  18. 17498

    Table 4_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.xlsx by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  19. 17499

    Table 4_Interactions between the intestinal microbiome and host genes in regulating vibriosis resistance in Cynoglossus semilaevis.xlsx by Weiwei Zheng (140828)

    Published 2025
    “…</p>Results<p>Obvious histopathological differences were observed between the resistant and susceptible groups in terms of inflammatory cells infiltration, and tissue dissociation of mucosal layer. 16S rRNA sequencing analysis indicated that Vibrio increased but Stenotrophomonas, Chryseobacterium, Delftia, and Salinivibrio decreased in the susceptible group. Compared to the control group, 1,986 differentially expressed genes (DEGs) were detected in the susceptible group, significantly more than the 310 DEGs found in the resistant group. …”
  20. 17500

    Table 1_Ten-year outcomes of repeat keratoplasty for optical indications.docx by Victoria Grace Dimacali (20597690)

    Published 2025
    “…Cox multiple regression analysis showed male gender (p = 0.023), PK regraft (p = 0.003), regraft rejection (p = 0.003), and initial graft indications of pseudophakic bullous keratopathy (p = 0.005) and aphakic bullous keratopathy (p = 0.004) to be risk factors for regraft failure, while longer time to regraft was associated with decreased risk of failure (p = 0.013).</p>Conclusion<p>Performing EK for failed optical PK or EK significantly improved regraft survival compared to repeat PK. …”