يعرض 1,961 - 1,980 نتائج من 3,549 نتيجة بحث عن 'significant ((((step decrease) OR (((teer decrease) OR (nn decrease))))) OR (mean decrease))', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1961
  2. 1962
  3. 1963

    Dataset visualization diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  4. 1964

    Dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  5. 1965

    Performance comparison of different models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  6. 1966

    C2f and BC2f module structure diagrams. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  7. 1967

    YOLOv8n detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  8. 1968

    YOLOv8n-BWG model structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  9. 1969

    BiFormer structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  10. 1970

    YOLOv8n-BWG detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  11. 1971

    GSConv module structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  12. 1972

    Performance comparison of three loss functions. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  13. 1973

    mAP0.5 Curves of various models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  14. 1974

    Network loss function change diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  15. 1975

    Comparative diagrams of different indicators. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  16. 1976

    YOLOv8n structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  17. 1977

    Geometric model of the binocular system. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  18. 1978

    Enhanced dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  19. 1979

    Value ranges of three representative points. حسب Bin Zhao (276445)

    منشور في 2025
    "…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…"
  20. 1980

    Signalized intersection in Kunshan. حسب Bin Zhao (276445)

    منشور في 2025
    "…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…"