Showing 281 - 300 results of 9,646 for search 'significant ((((step decrease) OR (((we decrease) OR (greater decrease))))) OR (mean decrease))', query time: 0.69s Refine Results
  1. 281
  2. 282

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  3. 283

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  4. 284

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  5. 285

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  6. 286

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  7. 287

    Stepped wedge cluster randomized trial design. by Antonio Marty Quispe (12574259)

    Published 2025
    “…We conducted a stepped-wedge cluster-randomized trial from March to December 2024 in the Llanchama community of the San Juan Bautista district, Loreto, Peru. …”
  8. 288
  9. 289
  10. 290
  11. 291
  12. 292
  13. 293
  14. 294

    B2 decreases glycolytic intermediates in cells. by Craig Eyster (392633)

    Published 2025
    “…Other abbreviations: HGA, DL-hydroxyglutaric acid; PEP, phosphoenolpyruvic acid; 3-PGA, 3-phosphoglyceric acid; G3P; glyceraldehyde 3-phosphate; Data (n = 5) are shown as mean±SD. Not significant (ns): **<i>P</i> ≤ 0.01, ****<i>P</i> ≤ 0.0001by one-way ANOVA with multiple comparison of the mean of each test group to the mean of the vehicle control. …”
  15. 295
  16. 296

    Decreased clonogenic capacity of U87MG and U251MG glioma cells dependent on SHG-44 concentration. by Denis Mustafov (19137870)

    Published 2025
    “…<p><b>(A)</b> A significant decrease in the proliferative clonal capacity of U87MG colonies was observed with 70ΜM and 100ΜM SHG-44 treatment. …”
  17. 297
  18. 298
  19. 299
  20. 300