Showing 81 - 100 results of 18,089 for search 'significant ((((step decrease) OR (((we decrease) OR (greatest decrease))))) OR (a decrease))', query time: 0.77s Refine Results
  1. 81
  2. 82
  3. 83
  4. 84

    Flow chart of sediment P fractionation procedure. by Jiayu Hu (673291)

    Published 2025
    “…The NH<sub>4</sub>Cl-Po and NaHCO<sub>3</sub>-Po concentrations in sediments showed the greatest decrease (accounting for 97.6% of total decrease) during the experiment. …”
  5. 85
  6. 86
  7. 87

    Data Sheet 2_Ruxolitinib synergizes with regulatory T cells to improve inflammation but has no added benefits in decreasing albuminuria in SLE.pdf by Mi-Ae Lyu (20413646)

    Published 2025
    “…UCB-Treg and ruxolitinib combination also downregulates the soluble form of inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, sCD40L, IL-17A, IL-17F, IL-1α, and LIF in cocultures. The addition of ruxolitinib increases UCB-Treg cell persistence in peripheral blood in vivo and decreases the soluble form of human inflammatory cytokines including IFN-γ, TNF-α, and sCD40L in plasma along with improvement of skin lesions in SLE xenografts. …”
  8. 88

    Data Sheet 3_Ruxolitinib synergizes with regulatory T cells to improve inflammation but has no added benefits in decreasing albuminuria in SLE.pdf by Mi-Ae Lyu (20413646)

    Published 2025
    “…UCB-Treg and ruxolitinib combination also downregulates the soluble form of inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, sCD40L, IL-17A, IL-17F, IL-1α, and LIF in cocultures. The addition of ruxolitinib increases UCB-Treg cell persistence in peripheral blood in vivo and decreases the soluble form of human inflammatory cytokines including IFN-γ, TNF-α, and sCD40L in plasma along with improvement of skin lesions in SLE xenografts. …”
  9. 89

    Data Sheet 1_Ruxolitinib synergizes with regulatory T cells to improve inflammation but has no added benefits in decreasing albuminuria in SLE.pdf by Mi-Ae Lyu (20413646)

    Published 2025
    “…UCB-Treg and ruxolitinib combination also downregulates the soluble form of inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, sCD40L, IL-17A, IL-17F, IL-1α, and LIF in cocultures. The addition of ruxolitinib increases UCB-Treg cell persistence in peripheral blood in vivo and decreases the soluble form of human inflammatory cytokines including IFN-γ, TNF-α, and sCD40L in plasma along with improvement of skin lesions in SLE xenografts. …”
  10. 90
  11. 91

    Data from: <b>Selection and genetic variation in plasticity drive age-related decreases in among-individual behavioural correlations</b> by Chang Seok Han (21814121)

    Published 2025
    “…In addition, genetic variation in age-related plasticity in exploration contributed to a decrease in the magnitude of genetic correlations during the adult stage. …”
  12. 92
  13. 93
  14. 94
  15. 95
  16. 96

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  17. 97

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  18. 98

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  19. 99

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  20. 100

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”