Showing 2,741 - 2,760 results of 9,063 for search 'significant ((((step decrease) OR (((we decrease) OR (greatest decrease))))) OR (mean decrease))', query time: 0.49s Refine Results
  1. 2741
  2. 2742

    Value ranges of three representative points. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  3. 2743

    Signalized intersection in Kunshan. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  4. 2744

    Dynamic system state in demand scenarios 2. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  5. 2745

    Survey data of the intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  6. 2746

    The main notations used in this paper. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  7. 2747

    Feedback elimination for feedback queue. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  8. 2748

    A typical cross signalized intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  9. 2749

    Four signal stages for the intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  10. 2750

    Dynamic system state in demand scenarios 3. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  11. 2751

    Dynamic system state in demand scenarios 1. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  12. 2752

    Characteristics comparison of related literature. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  13. 2753
  14. 2754

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 2755

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 2756

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 2757

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 2758

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 2759

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 2760

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”