Search alternatives:
step decrease » sizes decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
step decrease » sizes decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
601
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
602
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
603
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
604
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
605
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
606
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
607
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
608
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
609
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
610
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
611
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
612
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
613
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
614
Active DNA Demethylation Mediated by <i>OsGADD45a2</i> Regulates Growth, Development, and Blast (Magnaporthe oryzea) Resistance in Rice
Published 2024“…In <i>OsGADD45a2</i> overexpression lines, significant decreases in CG and CHG methylation levels were observed in protein-coding genes, leading to their upregulation. …”
-
615
-
616
-
617
-
618
FBLN1 regulates ferroptosis by reducing free ferrous iron by inhibiting TGF-β/Smad pathway.
Published 2024Subjects: -
619
-
620