Showing 2,901 - 2,920 results of 9,444 for search 'significant ((((teer decrease) OR (((we decrease) OR (greater decrease))))) OR (mean decrease))', query time: 0.52s Refine Results
  1. 2901
  2. 2902

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
  3. 2903

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
  4. 2904

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
  5. 2905

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
  6. 2906

    Discovery of Novel [1,2,4]Triazolo[1,5‑<i>a</i>]pyrimidine Derivatives as Novel Potent S‑Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer by Kaizhao Hu (15670612)

    Published 2024
    “…Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-<i>a</i>]pyrimidine-based small molecules targeting Skp2. …”
  7. 2907
  8. 2908
  9. 2909
  10. 2910

    General characteristics of study subjects. by Soo-Hee Hwang (17767519)

    Published 2025
    “…COVID-19 did not affect inpatient mortality (p = 0.9608), but in-hospital mortality decreased from 12% to 7% in the medical aid group.</p><p>Conclusion</p><p>Overall, we found that COVID-19 had an impact on admission rates of patients with AMI but did not have a significant impact on in-hospital mortality. …”
  11. 2911
  12. 2912

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 2913

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 2914

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 2915

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 2916

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 2917

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 2918

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 2919

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 2920

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”