Showing 1,001 - 1,020 results of 9,456 for search 'significant ((((we decrease) OR (((nn decrease) OR (greater decrease))))) OR (mean decrease))', query time: 0.74s Refine Results
  1. 1001

    Multi-organ differential gene expression changes statistically significant at hypertension onset. by Eden Hornung (20148295)

    Published 2024
    “…<i>Tgfb1</i> is significantly decreased in male SHR kidney compared to female at 16 weeks of age (p = 0.004). …”
  2. 1002

    Key safety measures including adverse events. by Anuja Dokras (8679261)

    Published 2025
    “…Waist circumference (mean change (MC) −2.23 cm; 95% CI [−3.98, −0.49]; <i>p</i> = 0.01), BMI (MC −0.49 kg/m<sup>2</sup>; 95% CI [−0.88, −0.10[; <i>p</i> = 0.01), and android fat mass measured by DXA (MC −167 g; 95% CI [−264, −71[; <i>p</i> < 0.001) decreased in the COCP group over the study period whilst there was no statistically significant changes in these parameters in the metformin only group when compared to baseline.. …”
  3. 1003

    Survey sample distribution. by Yin Liu (50073)

    Published 2025
    “…The results show that: (1) Based on the counterfactual hypothesis, if the farmers who obtain microcredit for poverty-alleviated population are not loaned, their production and operating income will decrease by 3.31%, that is, microcredit has a significant income-increasing effect, and the income-increasing effect of obtaining microcredit for the poverty-alleviated population on the monitoring objects is greater than the households that have lifted out of poverty. (2) The mechanism of action shows that the microcredit policy for the poverty- alleviated population promotes income increase by promoting farmers to increase material capital investment and social capital investment. (3) The income-increasing effect of obtain microcredit for poverty-alleviated population on the low-income initial endowment farmers is greater than that on high-income initial endowment farmers, and farmers with low-land initial endowment have a higher income increase effect, that is, a ‘raising the low ‘ effect. …”
  4. 1004

    Variable definition and descriptive statistics. by Yin Liu (50073)

    Published 2025
    “…The results show that: (1) Based on the counterfactual hypothesis, if the farmers who obtain microcredit for poverty-alleviated population are not loaned, their production and operating income will decrease by 3.31%, that is, microcredit has a significant income-increasing effect, and the income-increasing effect of obtaining microcredit for the poverty-alleviated population on the monitoring objects is greater than the households that have lifted out of poverty. (2) The mechanism of action shows that the microcredit policy for the poverty- alleviated population promotes income increase by promoting farmers to increase material capital investment and social capital investment. (3) The income-increasing effect of obtain microcredit for poverty-alleviated population on the low-income initial endowment farmers is greater than that on high-income initial endowment farmers, and farmers with low-land initial endowment have a higher income increase effect, that is, a ‘raising the low ‘ effect. …”
  5. 1005

    Robustness test. by Yin Liu (50073)

    Published 2025
    “…The results show that: (1) Based on the counterfactual hypothesis, if the farmers who obtain microcredit for poverty-alleviated population are not loaned, their production and operating income will decrease by 3.31%, that is, microcredit has a significant income-increasing effect, and the income-increasing effect of obtaining microcredit for the poverty-alleviated population on the monitoring objects is greater than the households that have lifted out of poverty. (2) The mechanism of action shows that the microcredit policy for the poverty- alleviated population promotes income increase by promoting farmers to increase material capital investment and social capital investment. (3) The income-increasing effect of obtain microcredit for poverty-alleviated population on the low-income initial endowment farmers is greater than that on high-income initial endowment farmers, and farmers with low-land initial endowment have a higher income increase effect, that is, a ‘raising the low ‘ effect. …”
  6. 1006

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  7. 1007

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  8. 1008

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  9. 1009

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  10. 1010

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  11. 1011

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  12. 1012

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  13. 1013

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  14. 1014

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  15. 1015

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  16. 1016

    Basic physical parameters of red clay. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  17. 1017

    BP neural network structure diagram. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  18. 1018

    Structure diagram of GBDT model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  19. 1019

    Model prediction error analysis index. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  20. 1020

    Fitting curve parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”