Showing 4,161 - 4,180 results of 18,390 for search 'significant ((small decrease) OR (((step decrease) OR (((mean decrease) OR (a decrease))))))', query time: 0.45s Refine Results
  1. 4161
  2. 4162
  3. 4163
  4. 4164
  5. 4165
  6. 4166
  7. 4167

    Table 1_Enhancement of oxaliplatin efficacy and amelioration of intestinal epithelial damage by Lactobacillus rhamnosus GG through modulation of gut microbiota.xlsx by Zijie Zhang (2543533)

    Published 2025
    “…Background<p>Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide, necessitating extensive research into effective treatment strategies. …”
  8. 4168
  9. 4169
  10. 4170
  11. 4171

    Figure 2 from Targeting PRMT1 Reduces Cancer Persistence and Tumor Relapse in <i>EGFR</i>- and <i>KRAS</i>-Mutant Lung Cancer by Xiaoxiao Sun (20589448)

    Published 2025
    “…<p>PRMT1 knockdown decreases persistence in STAT1-high <i>EGFR</i><sup><i>mut</i></sup> and <i>KRAS</i><sup><i>G12C</i></sup> lung cancer cell lines. …”
  12. 4172
  13. 4173

    Data Sheet 1_Knockdown of annexin A2 enhances the host cell apoptosis induced by Eimeria tenella.zip by Jixia Wang (1685902)

    Published 2025
    “…Following ANXA2 knockdown, the cell apoptosis rate, caspase-3 activity, and Bax expression levels were significantly increased (P < 0.01), whereas the infection rate and Bcl-2 expression levels were significantly decreased (P < 0.01) compared to the group infected with E. tenella alone. …”
  14. 4174
  15. 4175

    Data Sheet 6_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
  16. 4176

    Data Sheet 1_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.docx by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
  17. 4177

    Data Sheet 7_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
  18. 4178

    Data Sheet 3_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
  19. 4179

    Table 1_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.xlsx by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
  20. 4180

    Data Sheet 2_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip by Haiyan Liao (6100043)

    Published 2025
    “…RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were used to show that circ_0074158 impacts endothelial barrier function in sepsis by reducing the stability of the host gene CTNNA1 (mRNA) after binding to EIF4A3.</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”