Showing 4,801 - 4,820 results of 18,389 for search 'significantly ((((((a decrease) OR (greatest decrease))) OR (larger decrease))) OR (mean decrease))', query time: 0.52s Refine Results
  1. 4801

    Sensitivity analysis for inter-shift subscale. by Rong Pi (21743379)

    Published 2025
    “…Studies have consistently linked occupational fatigue to decreased productivity, heightened error rates, and compromised decision-making abilities, posing significant risks to both individual nurses and healthcare organizations. …”
  2. 4802

    Reinforced sample destruction mode. by Xiaoyan Ding (291429)

    Published 2025
    “…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
  3. 4803

    One-dimensional sand column test conditions. by Xiaoyan Ding (291429)

    Published 2025
    “…The suggested optimised parameters are as follows: a filling rate of 3 mL/min, a cementitious solution concentration of 0.5 mol/L to 1 mol/L, and a reasonable number of filling. …”
  4. 4804

    FK506 significantly potentiates caspofungin activity against tolerant <i>C. tropicalis</i> strains, reversing tolerance phenotypes in both <i>in vitro</i> and <i>in vivo</i> models... by Yongqin Wu (272012)

    Published 2025
    “…Survival rates were assessed using Kaplan-Meier analysis, and statistical significance was determined using a log-rank (Mantel-Cox) test. …”
  5. 4805

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  6. 4806

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  7. 4807

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  8. 4808

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  9. 4809

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  10. 4810

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  11. 4811

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  12. 4812

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  13. 4813

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  14. 4814

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  15. 4815

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  16. 4816

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  17. 4817

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  18. 4818

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  19. 4819

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  20. 4820