يعرض 5,201 - 5,220 نتائج من 18,229 نتيجة بحث عن 'significantly ((((((a decrease) OR (linear decrease))) OR (nn decrease))) OR (greater decrease))', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 5201

    Changes in the active H3K27ac and repressive H3K27me3 histone marks among Vasa2+/Piwi1+ and all cells in fed, starved, and refed juvenile polyps. حسب Eudald Pascual-Carreras (12115380)

    منشور في 2025
    "…Between fed, T<sub>5ds</sub> and T<sub>20ds</sub> timepoints, MFI levels of H3K27ac progressively and significantly decreased while levels H3K27me3 (M) did not change significantly (N). …"
  2. 5202

    Combination of intraperitoneal and intratumoral administration of vitamin D3 is more effective in reducing the EAC tumor volume compared to just i.p. administration: حسب Vidya G. Bettada (22208808)

    منشور في 2025
    "…Ki67 on the other hand showed a significant reduction in the expression in the i.p & i.t treated vitamin D3 group. 7D. …"
  3. 5203

    Testing set error. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  4. 5204

    Internal structure of an LSTM cell. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  5. 5205

    Prediction effect of each model after STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  6. 5206

    The kernel density plot for data of each feature. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  7. 5207

    Analysis of raw data prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  8. 5208

    Flowchart of the STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  9. 5209

    SARIMA predicts season components. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  10. 5210

    BWO-BiLSTM model prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  11. 5211

    Bi-LSTM architecture diagram. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  12. 5212

    LOSS curves for BWO-BiLSTM model training. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  13. 5213

    Analysis of STL-PCA prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  14. 5214

    Accumulated contribution rate of PCA. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  15. 5215

    Figure of ablation experiment. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  16. 5216

    Flowchart of the STL-PCA-BWO-BiLSTM model. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  17. 5217

    Parameter optimization results of BiLSTM. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  18. 5218

    Descriptive statistical analysis of data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  19. 5219

    The MAE value of the model under raw data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  20. 5220

    Three error values under raw data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"