Showing 5,041 - 5,060 results of 18,134 for search 'significantly ((((((a decrease) OR (nn decrease))) OR (larger decrease))) OR (linear decrease))', query time: 0.64s Refine Results
  1. 5041
  2. 5042

    Predictors in ordinal regression model for GDS. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  3. 5043

    Classification of hand grip strength. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  4. 5044

    Rating scale for functional severity [28]. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  5. 5045

    Regression model coefficients. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  6. 5046

    ICOPE screening positive participant’s responses. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  7. 5047

    WHO BMI classification for adults. by Shane Naidoo (20148021)

    Published 2025
    “…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
  8. 5048

    Data_Sheet_2_Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing.docx by Xiao-Xiao Guo (6092141)

    Published 2024
    “…The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). …”
  9. 5049

    Data_Sheet_1_Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing.zip by Xiao-Xiao Guo (6092141)

    Published 2024
    “…The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). …”
  10. 5050

    Changes in the active H3K27ac and repressive H3K27me3 histone marks among Vasa2+/Piwi1+ and all cells in fed, starved, and refed juvenile polyps. by Eudald Pascual-Carreras (12115380)

    Published 2025
    “…Between fed, T<sub>5ds</sub> and T<sub>20ds</sub> timepoints, MFI levels of H3K27ac progressively and significantly decreased while levels H3K27me3 (M) did not change significantly (N). …”
  11. 5051

    Combination of intraperitoneal and intratumoral administration of vitamin D3 is more effective in reducing the EAC tumor volume compared to just i.p. administration: by Vidya G. Bettada (22208808)

    Published 2025
    “…Ki67 on the other hand showed a significant reduction in the expression in the i.p & i.t treated vitamin D3 group. 7D. …”
  12. 5052

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  13. 5053

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  14. 5054

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  15. 5055

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  16. 5056

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  17. 5057

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  18. 5058

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  19. 5059

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  20. 5060

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”