Showing 6,981 - 7,000 results of 18,518 for search 'significantly ((((((larger decrease) OR (a decrease))) OR (greater decrease))) OR (mean decrease))', query time: 0.42s Refine Results
  1. 6981

    Estimation procedure flow-chart. by Stephan Dietrich (6979985)

    Published 2025
    “…In this paper, we apply a novel approach to try and address this issue. …”
  2. 6982

    Structural model outline. by Stephan Dietrich (6979985)

    Published 2025
    “…In this paper, we apply a novel approach to try and address this issue. …”
  3. 6983

    Amino acid metabolic pathways are influenced by the NC1 POM cycle over expression. by Bonnie A. McNeil (22331601)

    Published 2025
    “…Box and whisker plots of selected metabolites that displayed significant increase or decrease in the NC1 POM cycle producing strain (NC), red boxes, or empty vector producing strain (YC) green boxes. …”
  4. 6984

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  5. 6985

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  6. 6986

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  7. 6987

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  8. 6988

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  9. 6989

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  10. 6990
  11. 6991

    Prediction of transition readiness. by Sharon Barak (4803966)

    Published 2025
    “…In most transition domains, help needed did not decrease with age and was not affected by function. …”
  12. 6992

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 6993

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 6994

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 6995

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 6996

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 6997

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 6998

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 6999

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 7000

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”