Search alternatives:
larger decrease » marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5561
Comparison of with changed values of <i>λ</i> and M.
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5562
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5563
Outcomes of Sc onϕ(η).
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5564
Outcomes of K on .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5565
Outcomes of <i>Ω</i> on .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5566
Outcomes of Pe on .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5567
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5568
Outcomes of K on
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5569
Outcomes of Nt on
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5570
Variations of Pr and Ec to ).
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5571
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5572
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5573
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5574
Outcomes of Sb on .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5575
Diagram of the flow model.
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5576
HAM and Numerical solution for .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5577
Variations of Sb and Pe to -χ�(0).
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5578
Outcomes of λ on .
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5579
Outcomes of Pr on
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”
-
5580
Outcomes of Ec on
Published 2025“…This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. …”