Showing 2,081 - 2,100 results of 4,761 for search 'significantly ((((((larger decrease) OR (nn decrease))) OR (greater decrease))) OR (mean decrease))', query time: 0.54s Refine Results
  1. 2081
  2. 2082
  3. 2083
  4. 2084
  5. 2085
  6. 2086
  7. 2087

    Achieving Improved Ion Swarm Shaping Based on Ion Leakage Control in Ion Mobility Spectrometry by Jiyao Wang (2121157)

    Published 2025
    “…In Ion Mobility Spectrometry (IMS), ion gates are essential for controlling ion flow, significantly impacting detection sensitivity and resolution. …”
  8. 2088

    The TOR inhibitors Rapamycin and AZD-8055 strongly reduce RPS6 phosphorylation and cell proliferation in Vasa2+/Piwi1+ cells. by Eudald Pascual-Carreras (12115380)

    Published 2025
    “…<i>n</i> = 2–4 biological replicates per condition, with 15 individuals per replicate. Significance levels for Student <i>t</i> test are indicated for adjusted <i>p</i> values: *<i>p</i> < 0.05, ***<i>p</i> < 0.001, ***<i>p</i> < 0.0001. d: day(s), n.s.: non-significant. …”
  9. 2089
  10. 2090
  11. 2091
  12. 2092
  13. 2093
  14. 2094
  15. 2095
  16. 2096

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  17. 2097

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  18. 2098

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  19. 2099

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  20. 2100

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”