Showing 1,341 - 1,360 results of 18,079 for search 'significantly ((((((larger decrease) OR (we decrease))) OR (teer decrease))) OR (a decrease))', query time: 0.42s Refine Results
  1. 1341
  2. 1342
  3. 1343
  4. 1344
  5. 1345
  6. 1346
  7. 1347
  8. 1348
  9. 1349
  10. 1350
  11. 1351
  12. 1352
  13. 1353
  14. 1354
  15. 1355
  16. 1356

    A Wettability Gradient Synergistic Bionic Wedge-Shaped Track for Ultrafast and Long-Distance Spontaneous Transport of Droplets by Xinghai Zhong (21450285)

    Published 2025
    “…To address the aforementioned challenges, we developed a bionic wedge-shaped track on the copper (Cu) substrate inspired by the cone-shaped thorn of cactus for liquid spontaneous transport. …”
  17. 1357

    A Wettability Gradient Synergistic Bionic Wedge-Shaped Track for Ultrafast and Long-Distance Spontaneous Transport of Droplets by Xinghai Zhong (21450285)

    Published 2025
    “…To address the aforementioned challenges, we developed a bionic wedge-shaped track on the copper (Cu) substrate inspired by the cone-shaped thorn of cactus for liquid spontaneous transport. …”
  18. 1358

    A Wettability Gradient Synergistic Bionic Wedge-Shaped Track for Ultrafast and Long-Distance Spontaneous Transport of Droplets by Xinghai Zhong (21450285)

    Published 2025
    “…To address the aforementioned challenges, we developed a bionic wedge-shaped track on the copper (Cu) substrate inspired by the cone-shaped thorn of cactus for liquid spontaneous transport. …”
  19. 1359

    A Wettability Gradient Synergistic Bionic Wedge-Shaped Track for Ultrafast and Long-Distance Spontaneous Transport of Droplets by Xinghai Zhong (21450285)

    Published 2025
    “…To address the aforementioned challenges, we developed a bionic wedge-shaped track on the copper (Cu) substrate inspired by the cone-shaped thorn of cactus for liquid spontaneous transport. …”
  20. 1360

    A Wettability Gradient Synergistic Bionic Wedge-Shaped Track for Ultrafast and Long-Distance Spontaneous Transport of Droplets by Xinghai Zhong (21450285)

    Published 2025
    “…To address the aforementioned challenges, we developed a bionic wedge-shaped track on the copper (Cu) substrate inspired by the cone-shaped thorn of cactus for liquid spontaneous transport. …”