Showing 1,841 - 1,860 results of 17,966 for search 'significantly ((((((largest decrease) OR (a decrease))) OR (greatest decrease))) OR (nn decrease))', query time: 0.54s Refine Results
  1. 1841

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  2. 1842

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  3. 1843

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  4. 1844

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  5. 1845

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  6. 1846

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  7. 1847

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  8. 1848

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  9. 1849

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  10. 1850

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  11. 1851

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  12. 1852

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  13. 1853

    Primer sequences for qPCR. by Tucker Hopkins (20790529)

    Published 2025
    “…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
  14. 1854

    Source data for graphs. by Tucker Hopkins (20790529)

    Published 2025
    “…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
  15. 1855

    The reagents used in this study. by Tucker Hopkins (20790529)

    Published 2025
    “…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
  16. 1856
  17. 1857
  18. 1858
  19. 1859
  20. 1860