Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
3541
-
3542
-
3543
-
3544
Major hyperparameters of RF-SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3545
Pseudo code for coupling model execution process.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3546
Major hyperparameters of RF-MLPR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3547
Results of RF algorithm screening factors.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3548
Schematic diagram of the basic principles of SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3549
-
3550
-
3551
-
3552
-
3553
-
3554
-
3555
Ubiquitination of PoAce1 and effect of proteasome inhibitor MG132 on PoAce1.
Published 2025Subjects: -
3556
-
3557
-
3558
Construction strategies for GFP strains Ace1/Fbx23-GFP and BiFC strain Ace1-YFP-Fbx23.
Published 2025Subjects: -
3559
Construction strategy and verification of strains Ace1/Fbx23-TAP, Δ<i>fbx23</i>, and Re<i>fbx23</i>.
Published 2025Subjects: -
3560