Showing 8,481 - 8,500 results of 18,496 for search 'significantly ((((((largest decrease) OR (greater decrease))) OR (mean decrease))) OR (a decrease))', query time: 0.64s Refine Results
  1. 8481

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  2. 8482

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  3. 8483

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  4. 8484

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  5. 8485

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  6. 8486

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  7. 8487

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  8. 8488

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  9. 8489

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  10. 8490

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  11. 8491

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  12. 8492

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  13. 8493

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  14. 8494

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  15. 8495

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  16. 8496

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  17. 8497

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  18. 8498

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  19. 8499

    Table 1_Bioelectrical impedance vector analysis in older adults: reference standards from a cross-sectional study.docx by Francesco Campa (20997323)

    Published 2025
    “…Aging was associated with increased R/H and decreased phase angle, whereas older individuals with higher ALSM exhibited a greater phase angle and lower R/H, and Xc/H. …”
  20. 8500

    Table 2_Bioelectrical impedance vector analysis in older adults: reference standards from a cross-sectional study.docx by Francesco Campa (20997323)

    Published 2025
    “…Aging was associated with increased R/H and decreased phase angle, whereas older individuals with higher ALSM exhibited a greater phase angle and lower R/H, and Xc/H. …”