Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
2141
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2142
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2143
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2144
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2145
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2146
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2147
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2148
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2149
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2150
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2151
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
-
2152
Primer sequences for qPCR.
Published 2025“…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
-
2153
Source data for graphs.
Published 2025“…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
-
2154
The reagents used in this study.
Published 2025“…Furthermore, when S2R + <i>Drosophila</i> cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. …”
-
2155
-
2156
-
2157
-
2158
-
2159
-
2160